Evolutionary Paths in Galaxy Morphology, 2013 Sep 23-26, Sydney Australia Environmentally Galaxy Evolution: From a Gas Perspective

Aeree Chung Yonsei University

Evolutionary Paths in Galaxy Morphology, 2013 Sep 23-26, Sydney Australia Environmentally Galaxy Evolution: From a Gas Perspective

Aeree Chung Yonsei University

Evolutionary Paths in Galaxy Morphology, 2013 Sep 23-26, Sydney Australia Environmentally Galaxy Evolution: From a Gas Perspective

Aeree Chung Yonsei University

Environmental effects

- Tidal interaction
 - Slow interaction between galaxies (galaxy merging)
 - Fast & repetitive encounters between galaxies (harassment)
 - Tidal truncation due to the cluster potential
- Gas-gas interaction interstellar medium vs. intra cluster/galactic medium
 - Ram-pressure stripping
 - Turbulent-viscous stripping
 - Thermal evaporation (conduction)

Environmental effects

Tidal interactions

VS.

Gas-gas interactions

HI as a probe of environmental effects

Vulnerable to surroundings

Morphology & kinematics

Gas reservoir - evolution

Virgo cluster of galaxies

- ROSAT X-ray image (Böhringer et al. 1994)
- Nearest rich cluster (d~16.5 Mpc, Mei et al. 2007)
- Kinematically young (many candidates for galaxies undergoing various processes)

VIVA VLA Imaging of Virgo galaxies in Atomic gas

Ş VIVA

VLA HI imaging study of 53 late type galaxies selected in a range of density regions; observations were done mostly in C or CS, and complemented by D-array data

VIVA VLA Imaging of Virgo galaxies in Atomic gas

🗳 VIVA HI Atlas

HI in blue, magnified by a factor of 10+X-ray in orange (Chung et al. 2009)

VIVA VLA Imaging of Virgo galaxies in Atomic gas

- VIVA Examples (Chung et al. 2009)
- Gas-gas interaction
- Undisturbed stellar disk + truncated HI disk within the stellar disk
- **I** Tidal interaction
- Morphological peculiarities in gas and stellar distributions

History by comparison of model and HI

 The gas kinematics along its single-sided arm suggests gas falling back

SF quenching epoch at HI truncation radius

- Crowl & Kenney (2008)
- SparsePak on WIYN 3.5m at HI truncation radii stellar population synthesis model (starburst99) to measure the age of stars: $t_q \rightarrow Gas$ stripping timescale

VIVA galaxies & environmental effects

Diagnosed by multi-wavelength data including HI (Hyein Yoon et al., in prep)

Optical image + spectra (WIYN +), UV (GALEX), IR (Spitzer), etc. (J. H. van Gorkom, J. Kenney, H. Crowl, E. Murphy, D. Schiminovich, A. Abramson, S. Tonnesen, B. Vollmer, I. Wong +)

Color evolution of VIVA galaxies

HI stripping does everything?

HI properties are found to be correlated with global color. However, molecular gas plays more important role in SF. Any signs of molecular gas stripping?

- Still under debate; we do not find any convincing evidence
- A range of L_{CO}/L_K for both HI deficient and HI normal galaxies (Eun-Jung Chung 2012, PhD Th)
- Hard to define how deficient galaxies are in CO in the same way as atomic hydrogen
- Then how HI stripped galaxies suppress forming stars?

Molecular gas properties in HI stripped disk

- 🗳 NGC 4402
- Excess of CO emission along enhanced UV (and H-alpha)

- Molecular gas (and dust) distinct from normal Sp's
- SF enhanced along the HI compression (wind side)
- Even if the molecular gas does not get stripped, its properties may well be affected by the ICM.

Molecular gas properties in HI stripped disk NGC 4402

Preliminary result by Bumhyun Lee (SMA CO 2-1 + Kuno's NRO 1-0 data)

Ş

- LTE solution based on 12CO (1-0) & (2-1) line intensity
- What happens after enhanced star formation on wind side?
- Using line diagnostics, we will probe molecular gas temperature distribution and kinematics (ok to form stars?)

Molecular gas properties in HI stripped disk

🗳 NGC 4402

Preliminary result by Bumhyun Lee (12CO 1-0, 2-1 & 13CO 2-1)

Molecular gas properties in HI stripped disk NGC 4402

Preliminary result by Bumhyun Lee (NRO 12CO 1-0, SMA 2-1 & 13CO 2-1)

Ş

- Non-LTE solution, work in prog.
- IRAM I3CO I-0 mapping data, recently obtained.

Summary

Environmentally Driven Galaxy Evolution: From a Gas Perspective

