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Overview

“& What this talk is:
“¢ Arguing that the Hubble Sequence has outlived its usefulness
& Worse, it may now in fact be holding us back

*t A plea for precision

= What this talk is not:
¢ Science
* New results

“ Anything you don’t know already




Hubble “Tuning Fork” Diagram

l * Whatdo we mean by morphology?

“¢ The shape formed by the distribution of stars within a galaxy?
*¢ The shape formed by the distribution of old stars?

“¢ The shape formed by the distribution of gﬁs‘?

* The shape formed by the distribution of ionised gas?

*¢ The shape formed by the distribution of dust?

¢ Ambiguities here can lead to very real errors when trying to
compare results between authors/surveys, or data/simulations




STATISTICAL SCIENCE

previous :: next

Classifier Technology and the Illusion of Progress @
David J. Hand

Source: Statist. Sci. Volume 21, Number 1 (2006), 1-14.

Abstract

A great many tools have been developed for supervised classification, ranging
from early methods such as linear discriminant analysis through to modern

developments such as neural networks and support vector machines. A large
number of comparative studies have been conducted in attempts to establish

the relative superiority of these methods. This paper argues that these

comparisons often fail to take into account important aspects of real problems,

so that the apparent superiority of more sophisticated methods may be

something of an illusion. In particular, simple methods typically yield

performance almost as good as more sophisticated methods, to the extent that
the difference in performance may be swamped by other sources of uncertainty
that generally are not considered in the classical supervised classification

paradigm.
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What use 1s morphology?

2 sep sec

2 We use it as a convenient mental or verbal shorthand.

*¢ Itis convenient to label things in two (sometimes three) categories, as our
brains have not evolved to be comfortable thinking in many dimensions.

** We seem to like bimodalities. We find them all over the place:
** Red/blue
*¢ Star-forming/quiescent or active/passive
*¢ high-n/low-n

“¢ But real physical distributions span a continuum.

*¢ As Darren reminded us, morphology is a consequence of physics.




“¢ Brooke’s udal tails
masquerading as spiral arms.

“k Jennifer’s high-z clumpy disks
masquerading as mergers.

*¢ Bulge fraction: discriminating
David’s (or Roger’s) pseudo-
bulges (pseudo-disks?) from
classical bulges
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Limitatons with morphology

*¢ Galaxies look different depending on wavelength, resolution, mass,
environment, redshift, sensitivity.

¢ Our convenient terminology shorthand can lead to confusion and
imprecision. Worse, it can lead to erroneous conclusions. (E.g.,
“quenched”; are Kevin’s zombie galaxies “quenched” yet or not?)

¢ BEvery galaxy is unique: The closer you look the weirder it becomes. (E.g.,
Sukyoung’s deep images.)

*¢ Itis important to be clear about what question you are trying to answer.
The metrics used should be derived (or chosen) to answer a well-posed:
scientific question.
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_ Justbutterfly collecting?

* Clearly classification for its own
sake 1s not the goal.

* Taxonomy is useful, as it
provides a form of data
compression. Butitis only a
step along the way.

* What we want to achieve is an
understanding of the underlymg
astrophysics.




Quanuatative morphology

*¢ Jennifer Lotz gave an excellent overview yesterday of quantitative
morphology measures; CAS, Gini-M20, light profile or structure fits, etc.

*¢ Itis clear that any metric, to be useful, must be quantitative and objective.

*¢ Existing implementations have been applied primarily to monochromatic
data. They can be limited by resolution (redshift), and choice of
photometric band, for example.

¢ In principle, we can use more information, mutiple wavelength imaging,
to move such metrics to a point where they can measure something more
representative of the underlying astrophysics.




% Distance information is also known
for many 10° galaxies, and adds an
important constraint in quantifying
structure.
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l A brief diversion: bimodality

* Itis clear that the bimodalities we see in colour (red/blue), shape
(e.g., Sersic high-n/low-n), star formation rate (active/passive),
are not interchangeable. Yet we often use the terms “early” and
“late” to abbreviate any or all of these. (See Taylor et al.,

MNRAS, submitted.)
% Stop it.

*¢ No really. Stop it.
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Multlwavelength morpholo gy

&

¢ Kelly & McKay (2005, AJ, 129, 1287) implemented a linear
decomposition of galaxy images, simultaneously using u,g,r,i,z SDSS
1mages.

*k This approach demonstrated that galaxy populations can be classified
objectively in a way that mimics colour cuts.
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Multiwavelength morphology

&

& Contietal (2003, A]J, 126, 2330) and Welikala etal (2008, ApJ, 677,
970) implemented population synthesis fits to the colours of individual
pixels in HDF and SDSS data, called “pixel-z”.




Mulawavelength morphology

* Wijesinghe etal (2010, MNRAS, 404, 2077) combined both approaches.
Used “pixel-z” maps, quantified using the CAS metrics of Chris Conselice,
and the linear decompositions of Brandon Kelly.

¢ The aim was to compare the spatial distribution of the underlying physical
properties, quantified by CAS, with the quantitative morphology measure
from the decomposition.

*¢ No clear or strong connections were established.

*t Likely a consequence of limitations in each of the three measurement tools.
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ultiwavelellgth morphology
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¢ Haubler etal (2013, MNRAS, 430, 330) implemented a different
approach, using 9-band ugrizYJHK photometry from GAMA, also
informed by GAMA redshifts. The “megamorph™ approach simultaneously
fits single Sersic profiles to 9 photometric bands.
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We are datarich

¢ With modern large-scale multwavelength surveys we can do better.

*¢ Using colours and population synthesis codes, for example, we can infer
physical properties. Clearly much better if spectra are also available.

¢ IFS data is the logical next step, providing detailed physical measurements
from spectra, not just colours, in a spatially resolved fashion.

*¢ The goal should now move away from butterfly collecting to quantifying
spatially distributed galaxy properties in a more fundamental way, that
reflects their internal astrophysics.
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Move beyond the optical

% But we can do better still.

*t We have data spanning UV-radio now, including spectra and redshifts, for
many 105 galaxies, probably more.

** GAMA, for example, has 22-band photometry, plus spectra, for perhaps
250000 galaxies.

** SAMI already has IFS data, plus GAMA photometry, for about 650 galaxies,
and will do for 3000 by mid-2016.

¢t We need to be able to sensibly combine information including kinematics,
SED, SFR, stellar mass, dust mass, and more to maximise our understanding
of the astrophysics in galaxies.

*¢ T offer this as a challenge for the next generation of Zooniverse interfaces.

TheSkyNet seems to be on the right track!




Summary
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*¢ The Hubble Tuning Fork has been a useful tool for almost a century. We now
have the data to allow us to move past that, to more quantitative measures of
stellar distribution and kinematics, gas distribution and kinematics, and how
these are related.

* We need to define quantitative metrics that encompass the full suite of available
information in order to provide more physical insight.

¢ Use IFS data, multiwavelength imaging, redshifts, go beyond the optical. Each
butterfly is beautiful and deserves to be treated with special care.

*¢ Bimodality is clearly a real phenomenon, but artificially classifying galaxies into
two populations is limiting, and at worst erroneous.

¢ Early-type and late-type. Stop it.




The Spitzer Infrared Nearby Galaxies Survey (SINGS) Hubble Tuning-Fork

served 7S galades o part of it SINGS “];5
Lrdes Survey gy Program . g N
2 Hubbie TundkegFork dogaam, w " "”x -
cording 10 he morphology of ther sudel 3 “.
wnaton of hese galaams and ther placem
0 ther v . e man gool ©

Th: Nulsbund bnaging Photoers

The rfrared tange probed By these and other chssrvation
hen lor the SINGS | the desyled sy
S1af Tormaman, dust ek J s chsyibunion of s
cach Qaliy.  Light beem ol appears as et in
mage ' r B lermpry k green ard sed
produced by dust closds serousdiag sewdy bom stars, Th

ehipacal galasies on the lef dmost ervisely made of of

b sporad gakini owen Mily Wiry ave rich e

g stars and the raw materiah for ture s formation

an be found >

9

ndg paue

spe




