

The Scientific Legacy of Galaxy Zoo

Few have witnessed what you're about to see

Experience a privileged glimpse of the distant universe, observed by the Sloan Digital Sky Survey and Hubble Space Telescope

Chris Lintott University of Oxford

Classifying very large data sets is obviously beyond the capability of a single person. Therefore the galaxy classification problem calls for new approaches.

Lahav et al., Science, 1995

We thank the UKST unit of the Royal Observatory of Edinburgh for the plate material, the APM group at RGO Cambridge for scanning support...

Papers mentioning Galaxy Zoo in major journals (ApJ, ApJS, AJ, MNRAS, A&A)

Search via ADS Labs

Extragalactic Background Light Inferred from AEGIS Galaxy SED-type Fractions

A. Domínguez^{1,2,3*}, J. R. Primack⁴, D. J. Rosario⁵, F. Prada^{2,6}, R. C. Gilmore^{4,7},

The Scientific Legacy of Galaxy Zoo

Few have witnessed what you're about to see

Experience a privileged glimpse of the distant universe, observed by the Sloan Digital Sky Survey and Hubble Space Telescope

Chris Lintott University of Oxford

The Scientific Legacy of Galaxy Zoo

Important stuff led by people who aren't here

Few have witnessed what you're about to see

Experience a privileged glimpse of the distant universe, observed by the Sloan Digital Sky Survey and Hubble Space Telescope

Chris Lintott University of Oxford

Longo (astro-ph/0707.3793) finds an excess of anticlockwise spirals

Land et al. arXiv/0803.3274

Slosar et al. arXiv/0809.0717

Jimenez et al. arXiv/0906.0994

Bamford S P et al. MNRAS 2009;393:1324-1352

© 2009 The Authors. Journal compilation © 2009 RAS

MONTHLY NOTICES of the Royal Astronomical Society

The number of red spirals (red, thick, solid line) and blue early-types (blue, dotted line) in our luminosity-limited sample versus local galaxy density (left) as fractions of our whole sample and (right) as fractions of all spirals and early-types, respectively. 0.06 0.3 ¹blue-el · ¹red-sp 0.2 0.04 7 red-sp -5 blue-0.02 0.1 0 0 2 -10 2 -10 $\log_{10}(\Sigma [Mpc^{-2}])$ $\log_{10}(\Sigma [Mpc^{-2}])$ Bamford S P et al. MNRAS 2009;393:1324-1352 MONTHLY NOTICES © 2009 The Authors. Journal compilation © 2009 RAS of the Royal Astronomical Society Left: the change in the red fraction of galaxies in our luminosity-limited sample, divided into contributions due to the variation with local density of the morphological-type fractions (green, dotted line), the fraction of spirals that are red (red, dot–dashed line) and the fraction of early-types that are blue (blue, dashed line).

Bamford S P et al. MNRAS 2009;393:1324-1352

© 2009 The Authors. Journal compilation © 2009 RAS

\$8773534312794322	5877398110227661	5877425726824120	5880177034658448
fracdev=1.0	fracdew=0.56	fraodev=0.18	fracdev=0.05
r=0.0338	z+0.0298	z=0.0295	z=0.0309
5877425673194046	58773318911162450	5877260322650294	5877348932905862
fragter=1.0	fracdev=0.88	fracdev=0.60	fracdev=0.06
z=0.0267	c+0.0325	z=0.0339	z=0.0343
5880175660255806	5#77297522119150	5877364781326665	5880070058054781
fracdev=1.0	fracdev=0.84	fracdev=0.28	fracdev=0.11
z=0.0288	z=0.0307	z=0.0342	a=0.0303
5877425496001741	S880577260256976	5877292266317530	\$#77193777745594
fracdev=1.0	fracdev=0.81	fracdev=0.59	fracdev=0.33
z=0.0228	z=0.0236	c=0.0309	2=0.0337

Skibba R A et al. MNRAS 2012;423:1485-1502

Masters et al. arXiv/1003.0449

Marked Weighted Correlation Functions

$$w_{\rm p}(r_{\rm p}) = \int dr \,\xi(r_{\rm p},\pi) = 2 \int_{r_{\rm p}}^{\infty} dr \,\frac{r \,\xi(r)}{\sqrt{r^2 - r_{\rm p}^2}},$$
$$\xi(r_{\rm p},\pi) = \frac{DD - 2DR + RR}{RR},$$
$$W(r_{\rm p},\pi) = \frac{WW - 2WR + RR}{RR},$$
$$l \neq W(r_{\rm p})/r$$

$$M_{\rm p}(r_{\rm p}) = \frac{1 + m_{\rm p}(r_{\rm p})/r_{\rm p}}{1 + w_{\rm p}(r_{\rm p})/r_{\rm p}},$$

© 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS

MONTHLY NOTICES of the Royal Astronomical Society

587739376706978028 J102210.25+311713.9	587739610239402144 J123453.39+332430.3	587739608086741136 J113857.4+311846.6	588017979967733968 J123126.52+405711.5	588017720638570644 J110120.35+402242.3
588017978351616137 J112615.25+385817.4	588017977278988558 J113946.93+382225.9	587739098597687419 J115135.32+375603.6	587739408393044155 J122245.71+360218.4	587739508616631548 J121139.18+330804.5
		A second second	100 C	

Amorin et al.

Amorin et al. 2012

data.galaxyzoo.org zooniverse.org/publications

Bamford et al. arXiv/0805.2612 Skibba et al. arXiv/1111.0969 Cardamone et al. arXiv/0907.4155

chris@zooniverse.org