Neutral gas in Blue Compact Dwarf Galaxies

Ángel R. López-Sánchez

Australian Astronomical Observatory / Macquarie University

Bärbel Koribalski (CSIRO CASS/ATNF), César Esteban (IAC), Helmut Jerjen (ANU), Tye Young (ANU), Emma Kirby (ANU), Heath Jones (Monash Un.), Janine van Eymeren (U. Duisburg-Essen), Attila Popping (ICRAR) & John Hibbard (NRAO)

Evolution Paths in Galaxy Morphology – Sydney – Australia – 26 September 2013

Blue Compact Dwarf Galaxies (BCDG)

- Subset of low-luminosity (M_B ≥ -18) and low metallicity (~10% solar) galaxies undergoing a strong and short-lived episode of star formation.
- Quickly gas consumption.
- **Compact**, **irregular** morphologies
- Intense narrow emission lines superposed on a blue continuum.
- The starbust and a very young stellar population dominate the optical light (Cairós et al. 2001), very often masking all evidence of the underlying older stellar population(Noeske et al. 2003).
- What is the origin and nature of their starburt activity?

 \bullet Λ

Green Pea Galaxies: Luminous BCDG at intermediate redshift

- Discovered by Galazy Zoo participants (Cardamone et al. 2009).
 - Low mass (M_* < 10^{10.5} M_{\odot}) galaxies showing strong starbursts
 - High SFR (up to 60 M $_{\odot}$ yr ⁻¹) and sSFR (10⁻⁷ to 10⁻⁹ yr ⁻¹)
 - Low intrinsic reddening, E(B-V) < 0.25 mag</p>
- GPs are a subset of luminous blue compact galaxies showing chemical abundances (including a high N/O ratio!) similar to local BCDG (Izotov et al. 2011, Amorín et al. 2012).
 - 7.6 < 12 + log (O/H) < 8.4 (average ~ 1/5 solar) but carefull with empirical calibrations!

A

Morphologies of BCDG: Faint stellar plumes

- López-Sánchez & Esteban 2008, A&A, 491, 131
 - Deep optical images: interactions between dwarf galaxies and low-luminosity dwarf objects

Deep optical image of NGC 4449

Martínez-Delgado et al. 2012

Ray J. Gabany

Morphologies of BCDG: Faint stellar plumes

- López-Sánchez & Esteban 2008, A&A, 491, 131
 - Deep optical images: interactions between dwarf galaxies and low-luminosity dwarf objects

• ANO-

MACQUARIE

Kinematic features of interactions in BCDG

Star Formation in BCDG

 Individual and detailed analyses of BCDG using deep observations are fundamental to derive their properties and understand their evolution.

López-Sánchez & Esteban 2008, 2009, 2010b, López-Sánchez 2010

Mkn 309 (ALFOSC @ NOT, B + R + Hα)

UM 448 (ALFOSC @ NOT, U + B + R)

UM 420 (CAFOS @ 2.2m CAHA, U + 5 + **1**)

UM 159 (ALFOSC @ NOT, B + R + Ha)

Star formation in BCDG: The importance of HI observations

- "HI studies can trace feedback and feeding in a variety of ways" Thijs van der Hulst
 - BCDGs have large amount of neutral gas
- Analysis of the H I kinematics (total mass and dark matter)
- HI gas is the best tracer of galaxy-galaxy interactions !
- Infall / Outflows

NGC 2915 HI (blue) + B (green) + R (red)

A

HI is 5 times the Holmberg radius and $M_{\text{Dyn}}/L_B=76$

Meurer et al. (1996)

ll Zw 40 B (grayscale) + HI contours

Long HI tidal tail

van Zee et al. (1998)

- Tol 1924-416

- ESO 108-G017

H I Observations of BCDG using the ATCA

- Australia Telescope Compact Array, 6 x 22m dishes, Narrabri, NSW, Australia
- Deep H I line & 20 cm radio continuum observations for a sample of BCDGs

- POX 4

- NGC 1510* Tol 9
- NGC 5253* Tol 30
- He 2-10
- Full 12h x 4 arrays:
 EW 367m, 750m, 1.5km, 6 km
 - Velocity resolution of 4 km/s
 - HI column density:
 - ~ 5 x 10¹⁹ cm⁻² (for 40" beam)
 - Angular resolution of ~20"

 Complementary optical / NIR observations (AAT, INT, NOT, 2.3m ANU, WHT, VLT)
 + UV / IR data if available

* Belonging to the *Local Volume HI Survey (*LVHIS) project, PI B. Koribalski

- IC 4662*

- IC 4870

Galaxy pair NGC 1512 and BCDG NCG 1510

 ATCA observ. using 7 arrays

MACQUARIE

- Mosaic using 4 pointings
- Total int. time: 3.11 days
- Huge amount of neutral gas!
- Two extended spiral arms
- Two TDG candidates
- NGC 1512:
 - M_{HI} = 5.7×10⁹ M_{\odot}
 - $M_{\text{Dyn}} \sim$ 4 x 10^{11} M_{\odot}
 - $-M_{\rm HI}/L_{\rm B} = 1$
- NGC 1510:
 - M_{HI} ~ 4x10⁷ M_{\odot}
 - M_{HI}/L_B ~0.07

The BCDG NGC 5253

- D_{Hel}= 4.0 Mpc (Karachentsev et al. 2004)
- Scale: 19 pc / arcsec
- Optical size: **5.0' × 1.9'**

(5.7 kpc × 2.2 kpc)

A

- One of the closest starbursts, observed at all wavelengths
- Filamentary ionized gas (Calzetti et al. 1994)
- Deep analysis of the ionized gas of its center using UVES@VLT by López-Sánchez et al. (2007)
- 2D spec. observations FLAMES @ VLT by Monreal-Ibero et al. (2010, 2012) suggesting outflows from the massive HII regions

NGC 5253 – V (blue) + V((green))++H(gr(re)) 2.5m du Pont telescope, LCOQ(Vm)panas Φbsm/ 0HQ/(Ha) combined by Á.R. López=§ánchez (J2000)

DEC

NGC 5253: H I radio data - High resolution map

López-Sánchez et al. (2012)

In very good agreement with the results found by Kobulnicky & Skillman (2008) using VLA data.

NGC 5253 – High resolution H I map (dark blue + contours) + R (green) + H α (red) + UV HST (light blue)

NGC 5253: H I radio data Low resolution map

Radio data of NGC 5253 from the LVHIS (*Local Volume HI Survey*) project using four different ATCA arrays

DEC (J2000)

Properties: \checkmark H I mass: (1.7 ± 0.2) × 10⁸ M_☉ \checkmark H I / L_B = 0.069 M_☉ / L_{B_☉} \checkmark Dynamical mass: ~10⁸ M_☉?

> López-Sánchez, Koribalski & Esteban 2007 López-Sánchez et al. (2012)

ESO 154-G023 ATCA H I velocity field

A

H l velocity field:

Rotating about the optical MAJOR axis?

- Any kind of outflow?
- Formation of a polar ring?
- Interaction with M83 ~1 Gyr ago?
- ✓ Disruption/accretion of a gas-rich companion
 - Kinematics of the ionized gas decopled from kinematics of stars?

NGC 5253: H I radio data

NGC 5253 ATCA H I velocity field

López-Sánchez, Koribalski & Esteban 2007, Kobulnicky & Skillman 2008 López-Sánchez et al. 2012

NGC 5253: H I radio data

NGC 5253 Pos-vel diagrams

A

UNIVERSITY

 Infall of a gas-rich companion
 In agreement with CO observations (Turner et al. 1997)
 NGC 5253 is far from other BCDG properties

NGC 5253 ATCA H I channel maps

López-Sánchez et al. (2012)

BCDG Tol 30

• D = 29.3 Mpc

• 1' = 8.5 kpc

• Optical size: 1.2' × 1'

A

- Optical imagery and ionized gas analysis using 2.56m NOT:
- Two intense star-forming regions in opposite places within the galaxy
- Knot A:
 - WR features
 - 12+log O/H = 8.11 ± 0.09
 - $-\log N/O = -1.55 \pm 0.12$
- Knot B:
 - 12+log O/H = 8.25 ± 0.07
 - $-\log N/O = -1.44 \pm 0.12$
- Deep optical imagery using WFC @ 2.5m INT
 - Detection of nearby and diffuse non-stellar objects

López-Sánchez et al. in prep.

Tol 30 – B (blue) + R (green) + H α (red) ALFOSC @ 2.6m NOT

<u>BCDG Tol 30</u>

• D = 29.3 Mpc

• 1' = 8.5 kpc

• Optical size: **1.2'** × **1'**

A

MACQUARI

- Optical imagery and ionized gas analysis using 2.56m NOT:
- Two intense star-forming regions in opposite places within the galaxy

• Knot A:

- WR features
- 12+log O/H = 8.11 ± 0.09
- $-\log N/O = -1.55 \pm 0.12$
- Knot B:
 - 12+log O/H = 8.25 ± 0.07
 - $-\log N/O = -1.44 \pm 0.12$
- Deep optical imagery using WFC @ 2.5m INT
 - Detection of nearby and diffuse non-stellar objects

López-Sánchez et al. In prep.

BCDG Tol 30

H I distribution

- Total HI mass:
 - $\,M_{HI}$: $1.4\times10^9\,M_\odot$
- Tol 30:

 - $M_{HI}/L_B = 1.2$
 - $M_{Dyn}/L_{B} = 17.1$

• Northern tail:

- M_{HI} : $2.1\times10^8\,M_{\odot}$
- 15% total HI mass

• Eastern tail:

- $\,M_{HI}$: 9.1 \times 10 $^{7}\,M_{\odot}$
- 7% total HI mass
- TDG or dwarf obj?:
 - $\,M_{HI}$: $2.3\times10^7\,M_\odot$
 - $M_{HI}/L_B = 0.12$
 - It shows rotation!
 - $M_{\rm Dyn}/L_{\rm B} = 7.3$

López-Sánchez et al. In prep.

BCDG in different environments

- In galaxy groups:
 - Tol 9
 - Tol 30
 - NGC 5253

- In galaxy pairs:
 - Tol 1924-416
 - NGC 1510

Apparently isolated

Ángel R. López-Sánchez

- IC 4662 - He 2-10
- IC 4870
- ESO 108-G017
- POX 4

MO

Despite the environment, ALL studied BCDG show interactions features, very evident in the majority of them.

Ángel R. López-Sánchez

What is the HI morphology of "normal" dwarf galaxies?

LVHIS: "Local Volume HI Survey"

- PI: B.S. Koribalski (CSIRO)
- Deep H I line & 20 cm radio continuum observations for all **nearby** (v_{LG} < 550 km/s, D < 10 Mpc) gas-rich galaxies (HIPASS) with δ < -30° using the ATCA
- The majority dwarf galaxies!

• Little-THINGS

- PI: D. Hunter (Lowell Obs.)
- VLA observations of dwarf galaxies
- Few disturbed morphologies in HI

A

What is happening in "normal" dwarf galaxies?

- Deep NIR (H-band) observations of LV dwarf galaxies using AAT:
 - Regular stellar/gas morphologies, low SFR, old stellar populations
 - Tye Young (PhD, ANU, SEE POSTER), López-Sánchez, Jerjen, Koribalski, Ryder
- See also Kirby et al. (2008, 2012)
- Ivy Wong: progenitors of post-starburst galaxies show distortions in HI !!
- Smirti Mahajan: Starburst galaxies on the outskirts of clusters result from galaxy-galaxy harassment

Figure 4. Deep H-band images from the 3.9 linear distance scale is displayed. The image by a divergent greyscale, which begins with white (high intensity). Where available, the l left portion of the image panel.

IC 5052 H I map (blue) + H (green) + H α (red) (Kirby et al. 2008)

A

Conclusions

- Detailed multiwavelength analysis of BCDGs
 - Optical / NIR imagery
 - $H\alpha$ imagery
 - 2D optical spectroscopy
 - H I and 20cm observations
 - UV / IR data when available
- H I data are fundamental to understand the dynamical evolution of these objects.
- Despite the environment, FIREWORKS are produced by INTERACTIONS (FEEDING) of diffuse, HI-rich objects in
 ALL studied BCDGs. The FEEDBACK is fundamental to understand the evolution of dwarf galaxies.

 López-Sánchez & Esteban 2008, 2009, 2010a,b, 2011, 2012, López-Sánchez 2010

Many surprises will come from HI surveys (i.e. MeerKAT, ASKAP, APERTIF)

