Galaxy Zoo: Evolution of the bar fraction over the last eight billion years from HST-COSMOS

Thomas Melvin

Institute of Cosmology and Gravitation

Cosmic Evolution Survey

- ~2 square degree equatorial field
- Observe over 100,000 galaxies
- Imaging taken in F814W band by ACS
- Follow up observations from several other telescopes
- Combines photometric and spectroscopic redshifts (zCOSMOS)

Image from http://candels-collaboration.blogspot.co.uk/2012/07/cosmos-cosmic-evolution-survey.html

Galaxy Zoo: Hubble

- 3rd phase of Galaxy Zoo project
 - First not to use SDSS images
 - Ran from 2010-2012
 - Attracting 86,520 volunteers
- Who provided 40,631,068 clicks

Galaxy Zoo: Hubble

- 3rd phase of Galaxy Zoo project
 - First not to use SDSS images
 - Ran from 2010-2012
 - Attracting 86,520 volunteers
- Who provided 40,631,068 clicks
- Median of 47 classifiers per galaxy
 - Minimum of 33 classifiers per galaxy

Galaxy Zoo: Hubble

Final sample details $0.4 \le z \le 1.0$ $\log (M_{star}/M_{sun}) \ge 10.0$ $p \ge 0.5$ (GZH thresholds) 2,380 face-on disc galaxies 317 barred (13.3%)

GZH face-on discs

Tuesday 24th September 2013

tom.melvin@port.ac.uk

http://www.icg.port.ac.uk/~melvint/galaxy_samples.html

Barred GZH face-on discs

Tuesday 24th September 2013

tom.melvin@port.ac.uk

http://www.icg.port.ac.uk/~melvint/galaxy_samples.html

Quiescent disc galaxies

Tuesday 24th September 2013

tom.melvin@port.ac.uk

http://www.icg.port.ac.uk/~melvint/galaxy_samples.html

Time evolution of the bar fraction

Time evolution of the bar fraction

Time evolution of the bar fraction

Tuesday 24th September 2013

Tuesday 24th September 2013

Tuesday 24th September 2013

Tuesday 24th September 2013

 Massive disc galaxies are more likely to be dynamically cool, relaxed and disc dominated at earlier redshifts

• Increasing bar fraction predominantly driven by number of bars being formed across 8 Gyrs

• Massive disc galaxies are more likely to be dynamically cool, relaxed and disc dominated at earlier redshifts

• Increasing bar fraction predominantly driven by number of bars being formed across 8 Gyrs

• Low mass disc galaxies are more likely to be gas rich and dynamically hot

• Shallow increase of bar fraction due to number of unbarred discs entering sample being similar to number of bars being formed

What happens at z>1?

