Dust lane early-type galaxies: Connecting BH activity and star formation

Stas Shabala
University of Tasmania

with: Yuan Sen Ting (Harvard)
Sugata Kaviraj (Hertfordshire)
Galaxy Zoo citizen scientists
Black hole – galaxy relations

- $M_{\text{BH}} - M_{\text{bulge}}$
- $M_{\text{BH}} - \sigma$ (Gebhardt et al. 2000, Silk & Rees 1998)

Cosmic co-evolution

- BH growth and SF tightly coupled
- Feedback or common formation?

How are SF and AGN activity related in a hierarchical Universe?

Stanislav Shabala
Merger-driven star formation

Stanislav Shabala
Merger-driven star formation

Stanislav Shabala
Massive galaxies undergo frequent minor mergers at low redshift.
Dust lane early type galaxies

Kaviraj + 2012, MNRAS 423, 49
Dust lane early type galaxies

65% disturbed

6% of ETGs disturbed

Kaviraj + 2012, MNRAS 423, 49
Are dust lane early types special?
Control sample

Matched in stellar mass and redshift

Kaviraj + 2012, MNRAS 423, 49

Stanislav Shabala
Star formation rates

Matched in stellar mass, redshift and starburst age

Stanislav Shabala

Kaviraj + 2012, MNRAS 423, 49
AGN fuelling

Matched in stellar mass, redshift and starburst age

Stanislav Shabala

Kaviraj + 2012, MNRAS 423, 49
AGN diagnostics: optical

Stanislav Shabala
Optical AGN fraction

Optical AGN fraction

Dust lane = Gas-rich minor merger

Dust lane ETGs have:
- Disturbed morphologies
- Higher SFRs
- Higher BH accretion rate
- Higher optical AGN fraction

Dust lane ETGs have:
Disturbed morphologies
Higher SFRs
Higher BH accretion rate
Higher optical AGN fraction

So what?
Optical AGN fraction

Why so high?

Stanislav Shabala

How are the AGN triggered?
How are the AGN triggered?

1. Triggering mechanisms
2. Chronology
Two types of radio AGN

Low Excitation Radio Galaxies
- Accretion rate < 0.01 Eddington
- Radio-only AGN
- Hosted by massive galaxies in rich environments
- Dominant at $z \sim 0$
- No evolution to $z = 0.3$

Fuelled by cooling of hot halo gas

High Excitation Radio Galaxies
- Accretion rate > 0.01 Eddington
- Optical (+ radio) AGN
- Low-mass hosts in poor environments
- Scarce at $z \sim 0$
- Number density increases with z

Fuelled by interactions

What are the radio + optical AGN properties of dust lane early types?

Stanislav Shabala
AGN diagnostics: radio

Cross match SDSS with FIRST + NVSS
Excess radio emission relative to SFR \(\rightarrow \) AGN
Radio luminosity functions

- Split up by environment (radio AGN trigger is environment-dependent)
- Matched control sample

Kaviraj + 2012, MNRAS 423, 49
Hypothesis: mergers trigger AGN in dust lane ETGs
- Environment-independent
- *Cf* cooling of hot halo gas dominating control sample
- Prevalent in clusters

Prediction: *radio* AGN in dust lane ETGs should also be *optical* AGN

Kaviraj + 2012, MNRAS 423, 49

No difference for DETGs
Higher AGN fraction in clusters for all ETGs
Radio luminosity functions

89% BPT AGN

29% BPT AGN

Hypothesis: mergers trigger AGN in dust lane ETGs
- Environment-independent
- \textit{Cf} cooling of hot halo gas dominating control sample
- Prevalent in clusters

Prediction: \textit{radio} AGN in dust lane ETGs should also be \textit{optical} AGN

Kaviraj + 2012, MNRAS 423, 49
When do AGN switch on?
Starburst ages

Photometric SFHs (SDSS + GALEX)
Starburst ages

Stanislav Shabala
Starburst ages

How are the AGN and SF properties related?

Evolutionary sequence

Evolutionary sequence

AGN switches on \(\sim 100 \) Myrs after SF

Stanislav Shabala

Merger sequence

Star formation peaks in mergers
AGN peak in post-mergers

Minor merger

Quenching of SF ≤ 150-200 Myrs

AGN triggered ≈ 50-100 Myrs

Stanislav Shabala
Implications for AGN feedback

- Feedback efficiency depends on when AGN switches on (e.g. Shabala+ 2011, MNRAS, 413, 2815)

Stanislav Shabala

“The only sure way to identify an AGN is with VLBI”

- Enno Middelberg
"The only sure way to identify an AGN is with VLBI"

- Enno Middelberg
"The only sure way to identify an AGN is with VLBI"

- Enno Middelberg

No AGN with $t_{\text{SF}} < 300$ Myrs
Summary

• Dust lane ETGs are a proxy for gas-rich minor mergers
 – Disturbed morphologies
 – Enhanced star formation and AGN activity

• AGN switches on \(\sim 100 \) Myrs after SF onset

• Star formation \(\Rightarrow \) SF+AGN \(\Rightarrow \) AGN

• Implications for feedback
$P-D$ distribution

![Graph showing the relation between log $L_{1.4 \text{ GHz}}$ / W Hz$^{-1}$ and source size / kpc.]

All radio ETGs - black circles
Dust lane radio ETGs - red circles
Environments

![Graph showing the fraction of ETGs in different environments](image-url)
Radio AGN identification