Early-type galaxies in a cluster at $z=2$

Veronica Strazzullo
(CEA Saclay)

with R. Gobat, E. Daddi
and M. Onodera, M. Carollo, M. Dickinson, A. Renzini,
N. Arimoto, A. Cimatti, A. Finoguenov, R.R. Chary

Evolutionary paths in galaxy morphology, Sydney 2013
... why going to redshift 2

![Graph showing the average SFR (M_⊙ Gyr⁻¹) / M_stellar versus lookback time (Gyr) with redshift on the x-axis.](image)

De Lucia+ 2006

Bowens+ 2011

- 10^{15}
- 10^{13}
- 10^{12}
Cl J1449+0856

- “IRAC selected” (3.6-4.5μm), with a strong overdensity of red (Y-K>2) galaxies [Gobat et al. 2011]
- now spectroscopically confirmed at z=2 with >20 spectroscopic members [Gobat et al. 2013]
- an a-posteriori 3.5σ detection of extended X-ray emission [Gobat et al. 2011]
- a sub-$10^{14}M_\odot$ system, evolving into a typical massive cluster today
- wide multi-wavelength coverage including Subaru/VLT/HST/Spitzer optical/NIR, XMM, Chandra, Spitzer MIPS, Herschel PACS and SPIRE, APEX LABOCA, ALMA, JVLA, GMRT

Results presented here based on optical/NIR Imaging.
Cl J1449 as described by its galaxies

- a clear projected overdensity of (candidate) members
- a clear overdensity in redshift space

Projected Σ_3 density of $m_{140} < 25.7$ (candidate) members

![Projected Density Map]

![Histograms]

- $m_{F140W} < 24.5$
- $m_{F140W} < 25.7$
Cluster galaxies at redshift two

- a population of massive, quiescent early-type galaxies in the cluster core
- but cluster core hosts at the same time still actively forming galaxies

\textit{quiescent} or \textit{star-forming} cluster members (phot or spec), $m_{140} < 24.5$

Cluster galaxies at redshift two

- a population of massive, quiescent early-type galaxies in the cluster core
- **but** cluster core hosts at the same time still actively forming galaxies
- galaxy structure and stellar populations are already well correlated (as observed also in the field)

@log(M/M☉) > 10.4, ≈70% (⁺¹⁰⁻²₀) of passive (candidate) members have n>2 (similar in the field passive sample), wrt ≈10% (⁺²⁰⁻⁴) of SF members. In turn, ≈75% (⁺⁹⁻²⁰) of early-type (candidate) members are passive.

Cluster galaxies at redshift two

- quiescent fraction is already enhanced in the most dense regions

Compared to z≈1 clusters (e.g. Muzzin+ 2012) quiescent fractions appear to be lower (but beware of caveats!), at least for <10^{11} M_\odot galaxies. Already similar quiescent fraction for most massive core galaxies (see also e.g. Raichoor & Andreon 2012).

Quiescent fraction ≈15% (+15,-5) at log(M/M_\odot)<10.5, increasing to ≈30% at log(M/M_\odot)≈10.5-11, and ≈80% beyond 10^{11} M_\odot (also e.g. Kodama+ 2004, De Lucia+ 2007, Rudnick+ 2012,...)
Early-type galaxies in Cl J1449

- Cluster early-types appear smaller (by a factor 2-3) than z≈0 similarly massive early-types

- Cluster early-types might be \textit{larger (≈2x)} than z≈2 field early-types of similar mass

(see also Papovich+2012, Zirm+ 2012, Tanaka+ 2012 – perhaps more controversial results in lower redshift groups, e.g. Cooper+ 2012, Huertas-Company+ 2013)

Median ellipticity of cluster early-types close to low-z values (≈0.3, e.g. Holden+ 2009).
Early-type galaxies in Cl J1449

- Size difference between cluster and field early-types doesn’t seem to be due to systematic age differences (at face value...!)

see also spectral analysis Gobat+ 2013

e.g. Bernardi+ 2010, Valentinuzzi+ 2010, Saracco+ 2011... but see also e.g. Cimatti +2012, Onodera+ 2012, Whitaker+ 2012)
Early-type galaxies in Cl J1449

In principle, size evolution might indicate further structural evolution at later times, but... too many caveats to discuss here, including:

- local reference
- “progenitor bias”
- biases in stellar masses and sizes

![Graph showing size evolution vs. age and stellar mass](image)
The red sequence at $z=2$

New WFC3 F105W observations

Observed F105-F140 probes rest-frame U-B

= spec members

Kodama & Arimoto (1997) models ($z_f=3, 5, 10$)
The red sequence at $z=2$

New WFC3 F105W observations

Observed F105-F140 probes rest-frame $U-B$

- $d \leq 200$ kpc
- spec members
- $z_f = 3, 5, 10$

Kodama & Arimoto (1997) models ($z_f = 3, 5, 10$)
The red sequence at $z=2$

New WFC3 F105W observations

Observed F105-F140 probes rest-frame U-B

- \odot = spec members
- \square = $d \leq 200$ kpc

Kodama & Arimoto (1997) models ($z_f=3,5,10$)

Some “red sequence” galaxies are likely dusty SF (as expected)
The red sequence at $z=2$

![Graph showing the red sequence at $z=2$](image)

- **spec members**
- **$d \leq 200$ kpc**
Red sequence vs Main sequence
Star formation and quenching in Cl J1449

• Not quite there yet...
• In both plots, difficult to identify quenching galaxies
• Need dust-unbiased SFR tracer reaching close to 10^{10}M_\odot...
summary

• Only few galaxy clusters discovered at z≈2. Cl J1449 may be an example of typical cluster progenitor at this redshift. We likely see what we might expect:
 • most dense regions already host a concentration of massive passive galaxies
 • these share the cluster core with younger siblings still in their very active age
 • their structure might be more evolved than in the field

• BUT:
 • beware of the (tons of) caveats! (uncertainties, systematics, selection effects, very poor statistics,)
 • likely large cluster-to-cluster differences at this epoch

• (among the) other things we are looking for:
 • an accurate mapping of star formation, to constrain the “reversal of fortune”
 • cold gas reservoirs, fueling star formation and affecting structural evolution
 • structural vs stellar population evolution
 • the early red sequence and the drop off the main sequence (ongoing quenching, and constraints on the early formation of first cluster early-types)